enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Given a real valued function f on an n dimensional differentiable manifold M, the directional derivative of f at a point p in M is defined as follows. Suppose that γ(t) is a curve in M with γ(0) = p, which is differentiable in the sense that its composition with any chart is a differentiable curve in R n. Then the directional derivative of f ...

  3. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    This extends the directional derivative of scalar functions to sections of vector bundles or principal bundles. In Riemannian geometry, the existence of a metric chooses a unique preferred torsion-free covariant derivative, known as the Levi-Civita connection. See also gauge covariant derivative for a treatment oriented to physics.

  4. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    An alternative definition: A smooth vector field on a manifold is a linear map : () such that is a derivation: () = + for all , (). [ 3 ] If the manifold M {\displaystyle M} is smooth or analytic —that is, the change of coordinates is smooth (analytic)—then one can make sense of the notion of smooth (analytic) vector fields.

  5. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  6. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than ...

  7. Clarke generalized derivative - Wikipedia

    en.wikipedia.org/wiki/Clarke_generalized_derivative

    For a locally Lipschitz continuous function :, the Clarke generalized directional derivative of at in the direction is defined as (,) =, (+) (), where denotes the limit supremum.

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.

  9. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3.