enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...

  3. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In general statistics and probability, "divergence" generally refers to any kind of function (,), where , are probability distributions or other objects under consideration, such that conditions 1, 2 are satisfied. Condition 3 is required for "divergence" as used in information geometry.

  4. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  6. Uniform convergence in probability - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence_in...

    Uniform convergence in probability has applications to statistics as well as machine learning as part of statistical learning theory. The law of large numbers says that, for each single event A {\displaystyle A} , its empirical frequency in a sequence of independent trials converges (with high probability) to its theoretical probability.

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    If the mean =, the first factor is 1, and the Fourier transform is, apart from a constant factor, a normal density on the frequency domain, with mean 0 and variance /. In particular, the standard normal distribution φ {\textstyle \varphi } is an eigenfunction of the Fourier transform.

  8. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    The uniform convergence of more general empirical measures becomes an important property of the Glivenko–Cantelli classes of functions or sets. [2] The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators.

  9. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    If r < 1, then the series is absolutely convergent. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows: