Search results
Results from the WOW.Com Content Network
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .
In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non- simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups . [ 1 ]
Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds (also called smooth manifolds) generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the ...
In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.
Diagram of an exhaust manifold from a Kia Rio. 1. manifold; 2. gasket; 3. nut; 4. heat shield; 5. heat shield bolt Ceramic-coated exhaust manifold on the side of a performance car. In automotive engineering, an exhaust manifold collects the exhaust gases from multiple cylinders into one pipe.
This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy.
Vector field corresponding to a differential form on the punctured plane that is closed but not exact, showing that the de Rham cohomology of this space is non-trivial.. In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form ...
Let be a smooth manifold; a (smooth) distribution assigns to any point a vector subspace in a smooth way. More precisely, consists of a collection {} of vector subspaces with the following property: Around any there exist a neighbourhood and a collection of vector fields, …, such that, for any point , span {(), …, ()} =.