enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Calculus. In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.

  3. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    Calculus. In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [citation needed] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    How to establish this derivative of the natural logarithm depends on how it is defined firsthand. If the natural logarithm is defined as the integral ln ⁡ x = ∫ 1 x 1 t d t , {\displaystyle \ln x=\int _{1}^{x}{\frac {1}{t}}\,dt,} then the derivative immediately follows from the first part of the fundamental theorem of calculus .

  7. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Moreover, as the derivative of f(x) evaluates to ln(b) b x by the properties of the exponential function, the chain rule implies that the derivative of log b x is given by [35] [37] ⁡ = ⁡. That is, the slope of the tangent touching the graph of the base- b logarithm at the point ( x , log b ( x )) equals 1/( x ln( b )) .

  8. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: [ 1 ][ 2 ][ 3 ] It is the first of the polygamma functions. This function is strictly increasing and strictly concave on , [ 4 ] and it asymptotically behaves as [ 5 ] for complex numbers with large modulus ( ) in the sector with some ...

  9. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    The logarithmic derivative provides a simpler expression of the last form, as well as a direct proof that does not involve any recursion. The logarithmic derivative of a function f , denoted here Logder( f ) , is the derivative of the logarithm of the function.