Search results
Results from the WOW.Com Content Network
Several variants of the problem, depending on the particular definitions of nonperiodicity and the specifications of what sets may qualify as tiles and what types of matching rules are permitted, were solved beginning in the 1990s. The strictest version of the problem was solved in 2023, after an initial discovery in 2022.
A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ] The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings , though strictly speaking it is the tiles themselves that are ...
An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. [1] [2]
Instead of groups, groupoids, the mathematical generalization of groups in category theory, is the appropriate tool for studying quasicrystals. [51] Using mathematics for construction and analysis of quasicrystal structures is a difficult task. Computer modeling, based on the existing theories of quasicrystals, however, greatly facilitated this ...
An aperiodic graph. The cycles in this graph have lengths 5 and 6; therefore, there is no k > 1 that divides all cycle lengths. A strongly connected graph with period three. In the mathematical area of graph theory, a directed graph is said to be aperiodic if there is no integer k > 1 that divides the length of every cycle of the graph.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.