Search results
Results from the WOW.Com Content Network
The viscosity of an aqueous solution can either increase or decrease with concentration depending on the solute and the range of concentration. For instance, the table below shows that viscosity increases monotonically with concentration for sodium chloride and calcium chloride , but decreases for potassium iodide and cesium chloride (the ...
Hence, gaseous viscosity increases with temperature. In liquids, viscous forces are caused by molecules exerting attractive forces on each other across layers of flow. Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the ...
Substances in the molten state generally have reduced viscosity as the temperature increases. An exception to this principle is elemental sulfur, whose viscosity increases in the range of 130 °C to 190 °C due to polymerization. [1] Some organic compounds melt through mesophases, states of partial order between solid and liquid.
As the surface of the sensor shears through the liquid, energy is lost due to its viscosity. This dissipated energy is then measured and converted into a viscosity reading. A higher viscosity causes a greater loss of energy. [citation needed] Extensional viscosity can be measured with various rheometers that apply extensional stress.
Viscous flow in amorphous materials is characterised by deviations from the Arrhenius-type behaviour: the activation energy of viscosity Q changes from a high value Q H at low temperatures (in the glassy state) to a low value Q L at high temperatures (in the liquid state).
Purely elastic materials do not dissipate energy (heat) when a load is applied, then removed. However, a viscoelastic substance dissipates energy when a load is applied, then removed. Hysteresis is observed in the stress–strain curve, with the area of the loop being equal to the energy lost during the loading cycle. Since viscosity is the ...
The viscosity of a shear thickening – i.e. dilatant – fluid appears to increase when the shear rate increases. Corn starch suspended in water ("oobleck", see below) is a common example: when stirred slowly it looks milky, when stirred vigorously it feels like a very viscous liquid.
MÄnuka honey is an example of a thixotropic material.. Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow (become thinner, less viscous) over time when shaken, agitated, shear-stressed, or otherwise stressed (time-dependent viscosity).