Search results
Results from the WOW.Com Content Network
Hydroxyproline is produced by hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase following protein synthesis (as a post-translational modification). The enzyme catalyzed reaction takes place in the lumen of the endoplasmic reticulum. Although it is not directly incorporated into proteins, hydroxyproline comprises roughly 4 ...
Threonine (symbol Thr or T) [2] is an amino acid that is used in the biosynthesis of proteins.It contains an α-amino group (which is in the protonated −NH + 3 form when dissolved in water), a carboxyl group (which is in the deprotonated −COO − form when dissolved in water), and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid.
Similar functionality is also presented in serine and threonine, whose side chains have a hydroxy group, but are alcohols. Phosphorylation of these three amino acids' moieties (including tyrosine) creates a negative charge on their ends, that is greater than the negative charge of the only negatively charged aspartic and glutamic acids ...
Threonine proteases use the amino acid threonine as their catalytic nucleophile. Unlike cysteine and serine, threonine is a secondary hydroxyl (i.e. has a methyl group). This methyl group greatly restricts the possible orientations of triad and substrate as the methyl clashes with either the enzyme backbone or histidine base. [2]
Several other amino acids aside from proline are susceptible to hydroxylation, especially lysine, asparagine, aspartate and histidine. Lysine may be hydroxylated on its δ-C atom, forming hydroxylysine (Hyl). [9] Several endogenous proteins contain hydroxyphenylalanine and hydroxytyrosine residues.
In organic chemistry, alkanolamines (amino alcohols) are organic compounds that contain both hydroxyl (−OH) and amino (−NH 2, −NHR, and −NR 2) functional groups on an alkane backbone. Most alkanolamines are colorless. [1] [citation needed] Alkanolamines
Aromatic amino acids, excepting histidine, absorb ultraviolet light above and beyond 250 nm and will fluoresce under these conditions. This characteristic is used in quantitative analysis, notably in determining the concentrations of these amino acids in solution. [1] [2] Most proteins absorb at 280 nm due to the presence of tyrosine and ...
Adenylylation, [1] [2] more commonly known as AMPylation, is a process in which an adenosine monophosphate (AMP) molecule is covalently attached to the amino acid side chain of a protein. [3] This covalent addition of AMP to a hydroxyl side chain of the protein is a post-translational modification. [4]