Search results
Results from the WOW.Com Content Network
Thus, from a solution to the graph canonization problem, one could also solve the problem of graph isomorphism: to test whether two graphs G and H are isomorphic, compute their canonical forms Canon(G) and Canon(H), and test whether these two canonical forms are identical. The canonical form of a graph is an example of a complete graph ...
A canonical form is a labeled graph Canon(G) that is isomorphic to G, such that every graph that is isomorphic to G has the same canonical form as G. Thus, from a solution to the graph canonization problem, one could also solve the problem of graph isomorphism: to test whether two graphs G and H are isomorphic, compute their canonical forms ...
The original formulation is based on graph canonization, a normal form for graphs, while there is also a combinatorial interpretation in the spirit of color refinement and a connection to logic. There are several versions of the test (e.g. k-WL and k-FWL) referred to in the literature by various names, which easily leads to confusion.
In mathematics, an automatic group is a finitely generated group equipped with several finite-state automata.These automata represent the Cayley graph of the group. That is, they can tell whether a given word representation of a group element is in a "canonical form" and can tell whether two elements given in canonical words differ by a generator.
A Canonical XML document is by definition an XML document that is in XML Canonical form, defined by The Canonical XML specification. Briefly, canonicalization removes whitespace within tags, uses particular character encodings, sorts namespace references and eliminates redundant ones, removes XML and DOCTYPE declarations, and transforms ...
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
The weighted version of the decision problem was one of Karp's 21 NP-complete problems; [11] Karp showed the NP-completeness by a reduction from the partition problem. The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut.
When x is a natural number, this problem is normally viewed as computing the number of x-colorings of a given graph. For example, this includes the problem #3-coloring of counting the number of 3-colorings, a canonical problem in the study of complexity of counting, complete for the counting class #P.