enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  4. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  5. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.

  6. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  7. Separable filter - Wikipedia

    en.wikipedia.org/wiki/Separable_filter

    Typically a 2-dimensional convolution operation is separated into two 1-dimensional filters. This reduces the computational costs on an N × M {\displaystyle N\times M} image with a m × n {\displaystyle m\times n} filter from O ( M ⋅ N ⋅ m ⋅ n ) {\displaystyle {\mathcal {O}}(M\cdot N\cdot m\cdot n)} down to O ( M ⋅ N ⋅ ( m + n ...

  8. Image derivative - Wikipedia

    en.wikipedia.org/wiki/Image_derivative

    Image derivatives can be computed by using small convolution filters of size 2 × 2 or 3 × 3, such as the Laplacian, Sobel, Roberts and Prewitt operators. [1] However, a larger mask will generally give a better approximation of the derivative and examples of such filters are Gaussian derivatives [2] and Gabor filters. [3]

  9. Chirp Z-transform - Wikipedia

    en.wikipedia.org/wiki/Chirp_Z-transform

    The use of zero-padding for the convolution in Bluestein's algorithm deserves some additional comment. Suppose we zero-pad to a length M ≥ 2 N –1. This means that a n is extended to an array A n of length M , where A n = a n for 0 ≤ n < N and A n = 0 otherwise—the usual meaning of "zero-padding".