Search results
Results from the WOW.Com Content Network
Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus.
This is a list of dictionaries considered authoritative or complete by approximate number of total words, or headwords, included. number of words in a language. [1] [2] In compiling a dictionary, a lexicographer decides whether the evidence of use is sufficient to justify an entry in the dictionary.
The Lesk algorithm is based on the assumption that words in a given "neighborhood" (section of text) will tend to share a common topic. A simplified version of the Lesk algorithm is to compare the dictionary definition of an ambiguous word with the terms contained in its neighborhood. Versions have been adapted to use WordNet. [2]
The word "walk" is the base form for the word "walking", and hence this is matched in both stemming and lemmatization. The word "meeting" can be either the base form of a noun or a form of a verb ("to meet") depending on the context; e.g., "in our last meeting" or "We are meeting again tomorrow".
With online algorithms the pattern can be processed before searching but the text cannot. In other words, online techniques do searching without an index. Early algorithms for online approximate matching were suggested by Wagner and Fischer [3] and by Sellers. [2] Both algorithms are based on dynamic programming but solve
Sparse dictionary learning has been successfully applied to various image, video and audio processing tasks as well as to texture synthesis [15] and unsupervised clustering. [16] In evaluations with the Bag-of-Words model, [17] [18] sparse coding was found empirically to outperform other coding approaches on the object category recognition tasks.
This is the case for tree-based implementations, one representative being the <map> container of C++. [16] The order of enumeration is key-independent and is instead based on the order of insertion. This is the case for the "ordered dictionary" in .NET Framework, the LinkedHashMap of Java and Python. [17] [18] [19] The latter is more common.
A common alternative to using dictionaries is the hashing trick, where words are mapped directly to indices with a hashing function. [5] Thus, no memory is required to store a dictionary. Hash collisions are typically dealt via freed-up memory to increase the number of hash buckets [clarification needed]. In practice, hashing simplifies the ...