Search results
Results from the WOW.Com Content Network
A. Morula and B. cross section of a blastula displaying the blastocoel and blastoderm of early animal embryonic development. Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development, the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm.
Fish embryos go through a process called mid-blastula transition which is observed around the tenth cell division in some fish species. Once zygotic gene transcription starts, slow cell division begins and cell movements are observable. [4] During this time three cell populations become distinguished. The first population is the yolk syncytial ...
This is an embryo 4 hours after fertilization before it has undergone MBT. 3 layers are present: yolk syncytial layer (YSL), enveloping layer (EVL), and deep cells (DEL). Before the embryo undergoes the midblastula transition it is in a state of fast and constant replication of cells. [1] The cell cycle is very short. The cells in the zygote ...
The division of blastomeres from the zygote allows a single fertile cell to continue to cleave and differentiate until a blastocyst forms. The differentiation of the blastomere allows for the development of two distinct cell populations: the inner cell mass, which becomes the precursor to the embryo, and the trophectoderm, which becomes the precursor to the placenta.
In embryology, cleavage is the division of cells in the early development of the embryo, following fertilization. [1] The zygotes of many species undergo rapid cell cycles with no significant overall growth, producing a cluster of cells the same size as the original zygote.
The morula then develops by cavitation to become the blastocyst, or in many other animals the blastula. Cell differentiation then further commits the morula's cells into two types: trophectoderm cells that surround the lumen and the inner mass of cells (the embryoblast). The inner cell mass is at the origin of embryonic stem cells. [15]
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the total number of chromosomes is maintained. [1] Mitosis is preceded by the S phase of interphase (during which DNA replication occurs) and is followed by telophase and cytokinesis, which divide the cytoplasm, organelles, and cell ...