Search results
Results from the WOW.Com Content Network
Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.
The unit circle can be defined implicitly as the set of points (x, y) satisfying x 2 + y 2 = 1. Around point A, y can be expressed as an implicit function y(x). (Unlike in many cases, here this function can be made explicit as g 1 (x) = √ 1 − x 2.) No such function exists around point B, where the tangent space is vertical.
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange). Its x-intercepts are rotated 90° around their mid-point, and the Cartesian plane is interpreted as the complex plane (green). [3
Moreover, the following completeness identity for the above Hermite functions holds in the sense of distributions: = () = (), where δ is the Dirac delta function, ψ n the Hermite functions, and δ(x − y) represents the Lebesgue measure on the line y = x in R 2, normalized so that its projection on the horizontal axis is the usual Lebesgue ...
Switching {X,Y} in a graph. A two-graph is equivalent to a switching class of graphs and also to a (signed) switching class of signed complete graphs.. Switching a set of vertices in a (simple) graph means reversing the adjacencies of each pair of vertices, one in the set and the other not in the set: thus the edge set is changed so that an adjacent pair becomes nonadjacent and a nonadjacent ...
A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges of G and deletions of edges and vertices of G.The minor relationship forms a partial order on the set of all distinct finite undirected graphs, as it obeys the three axioms of partial orders: it is reflexive (every graph is a minor of itself), transitive (a minor of a ...