Search results
Results from the WOW.Com Content Network
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Given such a constant k, the proportionality relation ∝ with proportionality constant k between two sets A and B is the equivalence relation defined by {(,): =}. A direct proportionality can also be viewed as a linear equation in two variables with a y -intercept of 0 and a slope of k > 0, which corresponds to linear growth .
Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics) Noether's theorem on rationality for surfaces (algebraic surfaces) Non-squeezing theorem (symplectic geometry) Norton's theorem (electrical networks) Novikov's compact leaf theorem
Retrieved from "https://en.wikipedia.org/w/index.php?title=Basic_proportionality_theorem&oldid=1089918910"
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...
A computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these ...
Trivial may also refer to any easy case of a proof, which for the sake of completeness cannot be ignored. For instance, proofs by mathematical induction have two parts: the "base case" which shows that the theorem is true for a particular initial value (such as n = 0 or n = 1), and the inductive step which shows that if the theorem is true for a certain value of n, then it is also true for the ...
This is known as the AAA similarity theorem. [2] Note that the "AAA" is a mnemonic: each one of the three A's refers to an "angle". Due to this theorem, several authors simplify the definition of similar triangles to only require that the corresponding three angles are congruent. [3]