Search results
Results from the WOW.Com Content Network
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
The higher heating value takes into account the latent heat of vaporization of water in the combustion products, and is useful in calculating heating values for fuels where condensation of the reaction products is practical (e.g., in a gas-fired boiler used for space heat). In other words, HHV assumes all the water component is in liquid state ...
Increasing the input temperature (e.g. by using an oversized ground source or by access to a solar-assisted thermal bank [10]). Accurately determining thermal conductivity will allow for much more precise ground loop [ 11 ] or borehole sizing, [ 12 ] resulting in higher return temperatures and a more efficient system.
Converting units of temperature differences (also referred to as temperature deltas) is not the same as converting absolute temperature values, and different formulae must be used. To convert a delta temperature from degrees Fahrenheit to degrees Celsius, the formula is {Δ T } °F = 9 / 5 {Δ T } °C .
Since a 1 °C temperature change and a 1 K change in absolute temperature are the same, these cancel and no conversion is required. Example: For a typical New York City winter day with high of 40 °F and low of 30 °F, the average temperature is likely to be around 35 °F. For such a day we can approximate the HDD as (65 − 35) = 30.
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
A unit increment of one kelvin is exactly 1.8 times one degree Rankine; thus, to convert a specific temperature on the Kelvin scale to the Rankine scale, x K = 1.8 x °R, and to convert from a temperature on the Rankine scale to the Kelvin scale, x °R = x /1.8 K. Consequently, absolute zero is "0" for both scales, but the melting point of ...
The convective heat transfer between a uniformly heated wall and the working fluid is described by Newton's law of cooling: = where represents the heat flux, represents the proportionally constant called the heat transfer coefficient, represents the wall temperature and represents the fluid temperature.