enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...

  3. Trihexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Trihexagonal_tiling

    It contains four sets of parallel planes of points and lines, each plane being a two dimensional kagome lattice. A second expression in three dimensions has parallel layers of two dimensional lattices and is called an orthorhombic-kagome lattice. [8] The trihexagonal prismatic honeycomb represents its edges and vertices.

  4. Triply periodic minimal surface - Wikipedia

    en.wikipedia.org/wiki/Triply_periodic_minimal...

    In differential geometry, a triply periodic minimal surface (TPMS) is a minimal surface in that is invariant under a rank-3 lattice of translations. These surfaces have the symmetries of a crystallographic group. Numerous examples are known with cubic, tetragonal, rhombohedral, and orthorhombic symmetries.

  5. Lattice model (physics) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(physics)

    A three-dimensional lattice filled with two molecules A and B, here shown as black and white spheres. Lattices such as this are used - for example - in the Flory–Huggins solution theory In mathematical physics , a lattice model is a mathematical model of a physical system that is defined on a lattice , as opposed to a continuum , such as the ...

  6. Unit cell - Wikipedia

    en.wikipedia.org/wiki/Unit_cell

    A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as ⁠ 1 / n ⁠ of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain ⁠ 1 / 8 ⁠ of each of them. [3]

  7. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    Similar to the one-dimensional case, an asterisk is used to represent the convolution operation. The number of dimensions in the given operation is reflected in the number of asterisks. For example, an M-dimensional convolution would be written with M asterisks. The following represents a M-dimensional convolution of discrete signals:

  8. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    For a 3-dimensional lattice, the steps are analogous, but in step 2 instead of drawing perpendicular lines, perpendicular planes are drawn at the midpoint of the lines between the lattice points. As in the case of all primitive cells, all area or space within the lattice can be filled by Wigner–Seitz cells and there will be no gaps.

  9. Integer lattice - Wikipedia

    en.wikipedia.org/wiki/Integer_lattice

    where the symmetric group S n acts on (Z 2) n by permutation (this is a classic example of a wreath product). For the square lattice, this is the group of the square, or the dihedral group of order 8; for the three-dimensional cubic lattice, we get the group of the cube, or octahedral group, of order 48.