Search results
Results from the WOW.Com Content Network
For any point P of space, one considers a plane through P perpendicular to each coordinate axis, and interprets the point where that plane cuts the axis as a number. The Cartesian coordinates of P are those three numbers, in the chosen order. The reverse construction determines the point P given its three coordinates.
In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are the point's distance from a reference point called the pole, and
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...
The points (α, β) are plotted as with Newton's diagram method but the line α+β=n, where n is the degree of the curve, is added to form a triangle which contains the diagram. This method considers all lines which bound the smallest convex polygon which contains the plotted points (see convex hull ).
rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R:
Specifically, let r 0 be the position vector of some point P 0 = (x 0, y 0, z 0), and let n = (a, b, c) be a nonzero vector. The plane determined by the point P 0 and the vector n consists of those points P, with position vector r, such that the vector drawn from P 0 to P is perpendicular to n.
A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
The set of coordinates that define the position of a reference point and the orientation of a coordinate frame attached to a rigid body in three-dimensional space form its configuration space, often denoted () where represents the coordinates of the origin of the frame attached to the body, and () represents the rotation matrices that define the orientation of this frame relative to a ground ...