enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.

  4. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    Hooke's law may be written in terms of tensor components using index notation as = +, where δ ij is the Kronecker delta. The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli ; for instance, the bulk ...

  5. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  6. Anelasticity - Wikipedia

    en.wikipedia.org/wiki/Anelasticity

    Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.

  7. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The most general linear relation between two second-rank tensors , is = where are the components of a fourth-rank tensor . [1] [note 1] The elasticity tensor is defined as for the case where and are the stress and strain tensors, respectively.

  8. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  9. Hyperelastic material - Wikipedia

    en.wikipedia.org/wiki/Hyperelastic_material

    This model has the general form and the isotropic form respectively =: = +. where : is tensor contraction, is the second Piola–Kirchhoff stress, : is a fourth order stiffness tensor and is the Lagrangian Green strain given by = [() + + ()] and are the Lamé constants, and is the second order unit tensor.