Search results
Results from the WOW.Com Content Network
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.
The construction follows a recursion by starting with any number , that is not an upper bound (e.g. =, where and an arbitrary upper bound of ). Given I n = [ a n , b n ] {\displaystyle I_{n}=[a_{n},b_{n}]} for some n ∈ N {\displaystyle n\in \mathbb {N} } one can compute the midpoint m n := a n + b n 2 {\displaystyle m_{n}:={\frac {a_{n}+b_{n ...
By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.
When concerned about the minimum predicted value of Θ, one is no longer required to find an upper bounds of the estimate, leading to a form reduced form of the two-sided. (<) = As a result of removing the upper bound and maintaining the confidence, the lower-bound will increase. Likewise, when concerned with finding only an upper bound of a ...
If () = ([,]) (that is, the supremum of over [,]), the method is the upper rule and gives an upper Riemann sum or upper Darboux sum. If f ( x i ∗ ) = inf f ( [ x i − 1 , x i ] ) {\displaystyle f(x_{i}^{*})=\inf f([x_{i-1},x_{i}])} (that is, the infimum of f over [ x i − 1 , x i ] {\displaystyle [x_{i-1},x_{i}]} ), the method is the lower ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.