Ads
related to: flow meter regulator mig welding system
Search results
Results from the WOW.Com Content Network
Process plants consist of hundreds, or even thousands, of control loops all networked together to produce a product to be offered for sale. Each of these control loops is designed to keep some important process variable, such as pressure, flow, level, or temperature, within a required operating range to ensure the quality of the end product.
Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse (melt and join).
The flow rate is specified as a percentage of its calibrated full scale flow and is supplied to the MFC as a voltage signal. Mass flow controllers require the supply gas or liquid to be within a specific pressure range. Low pressure will starve the MFC of fluid and cause it to fail to achieve its setpoint. High pressure may cause erratic flow ...
The final flow rate may be adjusted at the torch. The regulator assembly usually has two pressure gauges, one indicating cylinder pressure, the other indicating delivery pressure. Inert gas shielded arc welding also uses gas stored at high pressure provided through a regulator. There may be a flow gauge calibrated to the specific gas. [citation ...
The regulator ensures that pressure of the gas from the tanks matches the required pressure in the hose. The flow rate is then adjusted by the operator using needle valves on the torch. Accurate flow control with a needle valve relies on a constant inlet pressure. Most regulators have two stages.
This is a list of welding processes, separated into their respective categories. The associated N reference numbers (second column) are specified in ISO 4063 (in the European Union published as EN ISO 4063 ). [ 1 ]
Ads
related to: flow meter regulator mig welding system