Search results
Results from the WOW.Com Content Network
Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process .
algorithm Gauss–Seidel method is inputs: A, b output: φ Choose an initial guess φ to the solution repeat until convergence for i from 1 until n do σ ← 0 for j from 1 until n do if j ≠ i then σ ← σ + a ij φ j end if end (j-loop) φ i ← (b i − σ) / a ii end (i-loop) check if convergence is reached end (repeat)
Gauss–Seidel method; J. Jacobi method; M. ... Successive over-relaxation This page was last edited on 18 May 2011, at 22:20 (UTC). Text is available under the ...
The main idea of multigrid is to accelerate the convergence of a basic iterative method (known as relaxation, which generally reduces short-wavelength error) by a global correction of the fine grid solution approximation from time to time, accomplished by solving a coarse problem. The coarse problem, while cheaper to solve, is similar to the ...
A (general) integer program and its LP-relaxation. The solution set of the former (depicted in red) is strictly smaller than that of the latter (in blue), leading to different optimal solutions. In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable.
Iterative Stencil Loops (ISLs) or Stencil computations are a class of numerical data processing solution [1] which update array elements according to some fixed pattern, called a stencil. [2] They are most commonly found in computer simulations , e.g. for computational fluid dynamics in the context of scientific and engineering applications.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.