enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    Two other effects which occurred between reionization and our observations of the cosmic microwave background, and which appear to cause anisotropies, are the Sunyaev–Zeldovich effect, where a cloud of high-energy electrons scatters the radiation, transferring some of its energy to the CMB photons, and the Sachs–Wolfe effect, which causes ...

  3. Cosmic background radiation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_background_radiation

    1938: Walther Nernst re-estimates the cosmic ray temperature as 0.75 K. [2] 1946: The term "microwave" is first used in print in an astronomical context in an article "Microwave Radiation from the Sun and Moon" by Robert Dicke and Robert Beringer. 1946: Robert Dicke predicts a microwave background radiation temperature of 20 K (ref: Helge Kragh)

  4. Discovery of cosmic microwave background radiation - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_cosmic...

    The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology.In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB), estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna.

  5. Planck satellite creates most detailed map ever of cosmic ...

    www.aol.com/news/2013-03-22-planck-satellite...

    The European Space Agency's Planck satellite has been gathering data since its launch in 2009, slowly building up a map of the cosmic microwave background radiation -- a distant remnant of the Big ...

  6. Steady-state model - Wikipedia

    en.wikipedia.org/wiki/Steady-state_model

    The steady-state model attempted to explain the microwave background radiation as the result of light from ancient stars that has been scattered by galactic dust. However, the cosmic microwave background level is very even in all directions, making it difficult to explain how it could be generated by numerous point sources, and the microwave ...

  7. Physical cosmology - Wikipedia

    en.wikipedia.org/wiki/Physical_cosmology

    The cosmic microwave background is radiation left over from decoupling after the epoch of recombination when neutral atoms first formed. At this point, radiation produced in the Big Bang stopped Thomson scattering from charged ions. The radiation, first observed in 1965 by Arno Penzias and Robert Woodrow Wilson, has a perfect thermal black-body ...

  8. Horizon problem - Wikipedia

    en.wikipedia.org/wiki/Horizon_problem

    Differences in the temperature of the cosmic background are smoothed by cosmic inflation, but they still exist. The theory predicts a spectrum for the anisotropies in the microwave background which is mostly consistent with observations from WMAP and COBE. [6] However, gravity alone may be sufficient to explain this homogeneity. [7]

  9. Cosmic microwave background spectral distortions - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave...

    CMB spectral distortions are tiny departures of the average cosmic microwave background (CMB) frequency spectrum from the predictions given by a perfect black body.They can be produced by a number of standard and non-standard processes occurring at the early stages of cosmic history, and therefore allow us to probe the standard picture of cosmology.