Search results
Results from the WOW.Com Content Network
Each crystallographic point group defines the (geometric) crystal class of the crystal. The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency , or electro-optical features such as the Pockels effect .
The S 2 group is the same as the C i group in the nonaxial groups section. S n groups with an odd value of n are identical to C nh groups of same n and are therefore not considered here (in particular, S 1 is identical to C s). The S 8 table reflects the 2007 discovery of errors in older references. [4] Specifically, (R x, R y) transform not as ...
All of the discrete point symmetries are subgroups of certain continuous symmetries. They can be classified as products of orthogonal groups O( n ) or special orthogonal groups SO( n ). O(1) is a single orthogonal reflection, dihedral symmetry order 2, Dih 1 .
The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm (): hemisymmorphic space groups contain the axial combination 422, but at least one mirror plane m will be substituted with glide plane, for example P4/mcc (, 35h), P4/nbm (, 36h), P4/nnc ...
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper rotation (determinant of M = −1). The geometric symmetries of crystals are described by space groups, which ...
Every point group in a Laue class has exactly the same abstract group structure except the centred group in the rightmost column which is the direct product of the rotational group with inversion. It follows that all groups in a Laue class have the same order except the centred group which is twice that of the others.
For point groups that reverse orientation, the situation is more complicated, as there are two pin groups, so there are two possible binary groups corresponding to a given point group. Note that this is a covering of groups, not a covering of spaces – the sphere is simply connected, and thus has no covering spaces. There is thus no notion of ...