Search results
Results from the WOW.Com Content Network
Far Field Acoustic Levitation: Larger than wavelength objects are levitated by generating a field which is tailored to the levitated object's size and shape. This allows objects larger than the wavelength to be levitated at distances greater than the wavelength from the source. However, the object must not be high density.
In the context of this article, "faster-than-light" means the transmission of information or matter faster than c, a constant equal to the speed of light in vacuum, which is 299,792,458 m/s (by definition of the metre) [3] or about 186,282.397 miles per second. This is not quite the same as traveling faster than light, since:
An example concerning the transmission of electromagnetic waves through an atomic gas is given by Loudon. [12] Another example is mechanical waves in the solar photosphere: The waves are damped (by radiative heat flow from the peaks to the troughs), and related to that, the energy velocity is often substantially lower than the waves' group ...
It became the largest geyser field in the Southern Hemisphere after the destruction of many of the New Zealand geysers, and is the third largest geyser field in the world. The salient feature of these geysers is that the height of their eruptions is very low, the tallest being only six metres (20 ft) high, but with steam columns that can be ...
A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase.
In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium, but is characterized by an abrupt, nearly discontinuous, change in pressure , temperature , and ...
The effect of frequency dispersion is that the waves travel as a function of wavelength, so that spatial and temporal phase properties of the propagating wave are constantly changing. For example, under the action of gravity, water waves with a longer wavelength travel faster than those with a shorter wavelength.
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...