Search results
Results from the WOW.Com Content Network
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.
Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4])
Given initial velocity u, one can calculate how high the ball will travel before it begins to fall. The acceleration is local acceleration of gravity g. While these quantities appear to be scalars, the direction of displacement, speed and acceleration is important. They could in fact be considered as unidirectional vectors.
In the case of an increase in speed from 0 to v with constant acceleration within a distance of s this acceleration is v 2 /(2s). Preparing an object for g-tolerance (not getting damaged when subjected to a high g-force) is called g-hardening. [citation needed] This may apply to, e.g., instruments in a projectile shot by a gun.
Because the acceleration of the Earth with regard to the Sun is small (meaning, to a good approximation, the two bodies can be regarded as traveling in straight lines past each other with unchanging velocity), the orbital results calculated by general relativity are the same as those of Newtonian gravity with instantaneous action at a distance ...
In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates and ′ of the Lorentz transformation with respect to and ′, from which the transformation of three-velocity (also called velocity-addition formula) between and ′ follows, and eventually by another differentiation with respect to and ′ the transformation of three-acceleration ...
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...