Search results
Results from the WOW.Com Content Network
1.0 short cwt (100 lb; 45 kg) long quarter: long qtr long qtr 1.0 long qtr (28 lb; 13 kg) short quarter: short qtr short qtr 1.0 short qtr (25 lb; 11 kg) stone: st st 14 lb used mostly in the British Commonwealth except Canada 1.0 st (14 lb; 6.4 kg) st kg. st kg lb; st lb. st lb kg; pound: lb lb 1.0 lb (0.45 kg) lb kg. lb kg st; lb st. lb st kg ...
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes. For example, a gigagram ( Gg ) or 10 9 g is 10 3 tonnes, commonly called a kilotonne .
|weight=100 kg → 100 kg (220 lb; 15 st 10 lb) |weight=108–111 kg → 108–111 kg (238–245 lb; 17 st 0 lb – 17 st 7 lb) If a template uses {{Infobox person/weight|{{{weight}}} |lb-stlb=yes }} , then an article using that template with an input in lb will display two conversions: kg followed by st /lb (default is one conversion to kg):
= 10 parts per million by volume = 10 ppmv = 10 volumes/10 6 volumes NO x molar mass = 46 kg/kmol = 46 g/mol Flow rate of flue gas = 20 cubic metres per minute = 20 m 3 /min The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure. The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m 3 /kmol.
The International Committee for Weights and Measures (CIPM) approved a revision in November 2018 that defines the kilogram by defining the Planck constant to be exactly 6.626 070 15 × 10 −34 kg⋅m 2 ⋅s −1, effectively defining the kilogram in terms of the second and the metre. The new definition took effect on 20 May 2019.
[1]: 143–144 [7] [8] [9] Most prefixes correspond to integer powers of 1000; the only ones that do not are those for 10, 1/10, 100, and 1/100. The conversion between different SI units for one and the same physical quantity is always through a power of ten.
J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a particle kg⋅m 2 ⋅s −1: L 2 M T −1: Strain: ε: Extension per unit length unitless 1: Stress: σ: Force per unit oriented surface area ...