Search results
Results from the WOW.Com Content Network
The mass of one breath is approximately a gram (0.5-5 g). A litre of air weighs about 1.2 g (1.2 kg/m 3). [20] A half litre ordinary tidal breath [11] weighs 0.6 g; a maximal 4.8 litre breath (average vital capacity for males) [11] weighs approximately 5.8 g.
On average, 4 liters of oxygen (V) and 5 liters of blood (Q) enter the alveoli in a minute, thus the normal V/Q ratio is 0.8. [10] It is considered abnormal when the ratio is greater or smaller than 0.8 and is referred to as ventilation-perfusion mismatch(V/Q mismatch).
Ideally, the oxygen provided via ventilation would be just enough to saturate the blood fully. In the typical adult, 1 litre of blood can hold about 200 mL of oxygen; 1 litre of dry air has about 210 mL of oxygen. Therefore, under these conditions, the ideal ventilation perfusion ratio would be about 0.95.
Natural air includes 21% oxygen, which is equivalent to F I O 2 of 0.21. Oxygen-enriched air has a higher F I O 2 than 0.21; up to 1.00 which means 100% oxygen. F I O 2 is typically maintained below 0.5 even with mechanical ventilation, to avoid oxygen toxicity, [2] but there are applications when up to 100% is routinely used.
The concentration of oxygen in the air (mmols O 2 per liter of air) therefore decreases at the same rate as the atmospheric pressure. [26] At sea level, where the ambient pressure is about 100 kPa, oxygen constitutes 21% of the atmosphere and the partial pressure of oxygen (P O 2) is 21 kPa (i.e. 21% of 100 kPa).
A normal minute volume while resting is about 5–8 liters per minute in humans. [1] Minute volume generally decreases when at rest, and increases with exercise. For example, during light activities minute volume may be around 12 litres. Riding a bicycle increases minute ventilation by a factor of 2 to 4 depending on the level of exercise involved.
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [ 1 ] For a given mass of an ideal gas , the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant.
It is also equal to the molar mass (M) divided by the mass density (ρ): = = The molar volume has the SI unit of cubic metres per mole (m 3 /mol), [ 1 ] although it is more typical to use the units cubic decimetres per mole (dm 3 /mol) for gases , and cubic centimetres per mole (cm 3 /mol) for liquids and solids .