Search results
Results from the WOW.Com Content Network
In two dimensions, the equation for non-vertical lines is often given in the slope–intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The -intercept of () is indicated by the red dot at (=, =). In analytic geometry , using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or ...
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
A necessary condition for two lines to intersect is that they are in the same plane—that is, are not skew lines. Satisfaction of this condition is equivalent to the tetrahedron with vertices at two of the points on one line and two of the points on the other line being degenerate in the sense of having zero volume.
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
When plotted in the manner described above, the value of the y-intercept (at = / =) will correspond to (), and the slope of the line will be equal to /. The values of y-intercept and slope can be determined from the experimental points using simple linear regression with a spreadsheet .
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]