Search results
Results from the WOW.Com Content Network
In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).
The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...
Using the technique of the separation of variables, a separated solution to Laplace's equation can be expressed as: = () and Laplace's equation, divided by V, is written: ¨ + ˙ + ¨ + ¨ = The Z part of the equation is a function of z alone, and must therefore be equal to a constant: Z ¨ Z = k 2 {\displaystyle {\frac {\ddot {Z}}{Z}}=k^{2 ...
The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.
The first integral formula corresponds to the Laplace transform (or sometimes the formal Laplace–Borel transformation) of generating functions, denoted by [] (), defined in. [7] Other integral representations for the gamma function in the second of the previous formulas can of course also be used to construct similar integral transformations ...
In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:
Green's functions may be categorized, by the type of boundary conditions satisfied, by a Green's function number. Also, Green's functions in general are distributions, not necessarily functions of a real variable. Green's functions are also useful tools in solving wave equations and diffusion equations.