enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.

  3. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]

  4. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...

  5. Chlorine - Wikipedia

    en.wikipedia.org/wiki/Chlorine

    Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

  6. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  7. Heats of vaporization of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heats_of_vaporization_of...

    J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds

  8. Heats of fusion of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heats_of_fusion_of_the...

    J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".