Search results
Results from the WOW.Com Content Network
The superconducting nanowire single-photon detector (SNSPD or SSPD) is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. [1] It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001.
The first digital camera to use a Foveon X3 sensor was the Sigma SD9, a digital SLR launched in 2002. [5] It used a 20.7 × 13.8 mm, 2268 x 1512 × 3 (3.54 × 3 MP) iteration of the sensor and was built on a Sigma-designed body using the Sigma SA mount.
Schematic of silicon nanowire. Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors.
The most important refinement is a definition of the camera signal nonlinearity better adapted to cameras with a higher dynamic range. The only two other major additions are: a) the total SNR curve which includes the spatial nonuniformities, and b) diagrams of horizontal and vertical profiles for a meaningful and well-arranged characterization ...
Corn-like nanowire is a one-dimensional nanowire with interconnected nanoparticles on the surface, providing a large percentage of reactive facets. TiO 2 corn-like nanowires were first prepared by a surface modification concept using surface tension stress mechanism through a two consecutive hydrothermal operation, and showed an increase of 12% ...
In computing, a motion controller is a type of input device that uses accelerometers, gyroscopes, cameras, or other sensors to track motion. Motion controllers see use as game controllers , for virtual reality and other simulation purposes, and as pointing devices for smart TVs and Personal computers .
The specificity and sensitivity can be controlled by the appropriate choice of materials and their interaction with the analytes, that can achieve even label-free sensors. [11] The concentration of chemical species in vapor or liquid phases as well as in more complex mixtures can be determined with high confidence.
Piezoelectric sensors either convert mechanical force into electric force or vice versa. This force is then transduced into a signal. MIP spectroscopic sensors can be divided into three subcategories, which are chemiluminescent sensors, surface plasmon resonance sensors, and fluorescence sensors. As the name suggests, these sensors produce ...