enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    Vulgar Fraction One Ninth 2151 8529 ⅒ 110: 0.1 Vulgar Fraction One Tenth 2152 8530 ⅓ 1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 15: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 25: 0.4 Vulgar Fraction Two Fifths 2156 8534 ⅗ 3 ⁄ 5: 0.6 Vulgar Fraction ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A unit fraction is a common fraction with a numerator of 1 (e.g., ⁠ 1 / 7 ⁠). Unit fractions can also be expressed using negative exponents, as in 21, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠.

  4. Unit fraction - Wikipedia

    en.wikipedia.org/wiki/Unit_fraction

    Arthur Eddington argued that the fine-structure constant was a unit fraction. He initially thought it to be 1/136 and later changed his theory to 1/137. This contention has been falsified, given that current estimates of the fine structure constant are (to 6 significant digits) 1/137.036. [30]

  5. 1/2 − 1/4 + 1/8 − 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%E2%88%92_1/4_%2B_1/8...

    Demonstration of ⁠ 2 / 3 ⁠ via a zero-value game. A slight rearrangement of the series reads + + =. The series has the form of a positive integer plus a series containing every negative power of two with either a positive or negative sign, so it can be translated into the infinite blue-red Hackenbush string that represents the surreal number ⁠ 1 / 3 ⁠:

  6. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = ⁠ 1 / 6 ⁠, B 4 = ⁠− + 1 / 30 ⁠, and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]

  7. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    This series was used as a representation of two of Zeno's paradoxes. [2] For example, in the paradox of Achilles and the Tortoise, the warrior Achilles was to race against a tortoise. The track is 100 meters long. Achilles could run at 10 m/s, while the tortoise only 5. The tortoise, with a 10-meter advantage, Zeno argued, would win.

  8. 1/4 + 1/16 + 1/64 + 1/256 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/.../64_%2B_1/256_%2B_%E2%8B%AF

    Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + ⁠ 1 / 4 ⁠ + ⁠ 1 / 16 ⁠ + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − ⁠ 1 / 4 ⁠ and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.

  9. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    The correct result would be 1.2 × 5.6 = 6.72. For a more complicated example, suppose that the two numbers 1.2 and 5.6 are represented in 32-bit fixed point format with 30 and 20 fraction bits, respectively. Scaling by 2 30 and 2 20 gives 1 288 490 188.8 and 5 872 025.6, that round to 1 288 490 189 and 5 872 026, respectively. Both numbers ...