Search results
Results from the WOW.Com Content Network
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another. (Cohesion refers to the tendency of similar or identical particles and surfaces to cling to one another.) The forces that cause adhesion and cohesion can be divided into several types.
Cell junctions [1] or junctional complexes are a class of cellular structures consisting of multiprotein complexes that provide contact or adhesion between neighboring cells or between a cell and the extracellular matrix in animals. [2] They also maintain the paracellular barrier of epithelia and control paracellular transport. Cell junctions ...
Schematic of cell adhesion. Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released ...
The process is highly regulated by cell adhesion molecules, particularly, the addressin also known as MADCAM1. This antigen is known for its role in tissue-specific adhesion of lymphocytes to high endothelium venules. [23] Through these interactions they play a crucial role in orchestrating circulating lymphocytes.
Cohesion, along with adhesion (attraction between unlike molecules), helps explain phenomena such as meniscus, surface tension and capillary action. Mercury in a glass flask is a good example of the effects of the ratio between cohesive and adhesive forces.
This is the source of traction required for migration; the focal adhesion acts as a molecular clutch when it tethers to the ECM and impedes the retrograde movement of actin, thus generating the pulling (traction) force at the site of the adhesion that is necessary for the cell to move forward.
This figure depicts fimbriae adhesion. In this process the fimbriae of a bacterial cell (right) adhere to specific proteins, called receptors, found on the outer membrane of a host cell (left). They do this by a specific interaction between the receptors of the host cell and the perfectly matched adhesions found on the bacteria's fimbriae.
As the similarities between the adhesive and the substrate increase, so does the degree of mucoadhesion. [5] The bond strength increases with the degree of penetration, increasing the adhesion strength. [11] The penetration rate is determined by the diffusion coefficient, the degree of flexibility of the adsorbate chains, mobility and contact ...