Search results
Results from the WOW.Com Content Network
Nuclear criticality safety practitioners attempt to prevent nuclear criticality accidents by analyzing normal and credible abnormal conditions in fissile material operations and designing safe arrangements for the processing of fissile materials. A common practice is to apply a double contingency analysis to the operation in which two or more ...
Criticality accidents are divided into one of two categories: Process accidents, where controls in place to prevent any criticality are breached;; Reactor accidents, which occur due to operator errors or other unintended events (e.g., during maintenance or fuel loading) in locations intended to achieve or approach criticality, such as nuclear power plants, nuclear reactors, and nuclear ...
Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding, radiography, medical physics, nuclear criticality safety, detector design and analysis, nuclear oil well logging, accelerator target design, fission and fusion reactor design, decontamination and decommissioning. The code ...
A clean-up crew working to remove radioactive contamination after the Three Mile Island accident. Nuclear safety is defined by the International Atomic Energy Agency (IAEA) as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards".
Nuclear safety covers the actions taken to prevent nuclear and radiation accidents or to limit their consequences and damage to the environment. This covers nuclear power plants as well as all other nuclear facilities, the transportation of nuclear materials, and the use and storage of nuclear materials for medical, power, industry, and ...
An important concern in the nuclear safety field is the aging of nuclear reactors. Quality Assurance Technicians, weld inspectors and radiographers use ultrasonic waves to look for cracks and other defects in hot metal parts, in order to identify "microscale" defects that lead to big cracks. [14]
Beyond-design-basis events can reduce or eliminate the margin of safety of the structures, systems and components, possibly resulting in a catastrophic failure. [8]The Fukushima Daiichi nuclear disaster was caused by a "beyond-design-basis event": the tsunami and associated earthquakes were more powerful than the plant was designed to accommodate.
Criticality is the normal operating condition of a nuclear reactor, in which nuclear fuel sustains a fission chain reaction. A reactor achieves criticality (and is said to be critical) when each fission releases a sufficient number of neutrons to sustain an ongoing series of nuclear reactions.