Search results
Results from the WOW.Com Content Network
Included are function tables of logarithms (a useful computational tool that had been described in 1614 by John Napier) and antilogarithms, and instructive examples for computing planetary positions. [7] For most stars these tables were accurate to within one arc minute, [8] and included corrective factors for atmospheric refraction. [9]
For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10. More generally, if x = b y, then y is the logarithm of x to base b, written log b x, so log 10 1000 = 3. As a single-variable function, the logarithm to base b is the inverse of exponentiation with base b.
The Swiss mathematician Jost Bürgi constructed a table of progressions which can be considered a table of antilogarithms [25] independently of John Napier, whose publication (1614) was known by the time Bürgi published at the behest of Johannes Kepler. We know that Bürgi had some way of simplifying calculations around 1588, but most likely ...
Positive numbers less than 1 have negative logarithms. For example, = = + + = To avoid the need for separate tables to convert positive and negative logarithms back to their original numbers, one can express a negative logarithm as a negative integer characteristic plus a positive mantissa.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.
Redwood City, California: Benjamin/Cummings Publishing Company, Inc. Appendix C includes impossibility of algorithms deciding if a grammar contains ambiguities, and impossibility of verifying program correctness by an algorithm as example of Halting Problem. Halava, Vesa (1997).
Bürgi was born in 1552 Lichtensteig, Toggenburg, at the time a subject territory of the Abbey of St. Gall (now part of the canton of St. Gallen, Switzerland).Not much is known about his life or education before his employment as astronomer and clockmaker at the court of William IV in Kassel in 1579; it has been theorized that he acquired his mathematical knowledge at Strasbourg, among others ...