Search results
Results from the WOW.Com Content Network
The regular decagon has Dih 10 symmetry, order 20. There are 3 subgroup dihedral symmetries: Dih 5, Dih 2, and Dih 1, and 4 cyclic group symmetries: Z 10, Z 5, Z 2, and Z 1. These 8 symmetries can be seen in 10 distinct symmetries on the decagon, a larger number because the lines of reflections can either pass through vertices or edges.
The symmetries of this pentagon are linear transformations of the plane as a vector space. If we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of D n as matrices, with composition being matrix multiplication.
The Desargues configuration can be constructed in two dimensions from the points and lines occurring in Desargues's theorem, in three dimensions from five planes in general position, or in four dimensions from the 5-cell, the four-dimensional regular simplex. It has a large group of symmetries, taking any point to any other point and any line ...
There are several different ways of constructing the Desargues graph: It is the generalized Petersen graph G(10,3).To form the Desargues graph in this way, connect ten of the vertices into a regular decagon, and connect the other ten vertices into a ten-pointed star that connects pairs of vertices at distance three in a second decagon.
The regular hendecagon has Dih 11 symmetry, order 22. Since 11 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries: Z 11, and Z 1. These 4 symmetries can be seen in 4 distinct symmetries on the hendecagon. John Conway labels these by a letter and group order. [11]
The regular pentadecagon has Dih 15 dihedral symmetry, order 30, represented by 15 lines of reflection. Dih 15 has 3 dihedral subgroups: Dih 5, Dih 3, and Dih 1. And four more cyclic symmetries: Z 15, Z 5, Z 3, and Z 1, with Z n representing π/n radian rotational symmetry. On the pentadecagon, there are 8 distinct symmetries.
The regular hexadecagon has Dih 16 symmetry, order 32. There are 4 dihedral subgroups: Dih 8, Dih 4, Dih 2, and Dih 1, and 5 cyclic subgroups: Z 16, Z 8, Z 4, Z 2, and Z 1, the last implying no symmetry. On the regular hexadecagon, there are 14 distinct symmetries. John Conway labels full symmetry as r32 and no symmetry is labeled a1.
The regular heptadecagon has Dih 17 symmetry, order 34. Since 17 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries: Z 17, and Z 1. These 4 symmetries can be seen in 4 distinct symmetries on the heptadecagon. John Conway labels these by a letter and group order. [7]