enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    The thrust-to-weight ratio is calculated by dividing the thrust (in SI units – in newtons) by the weight (in newtons) of the engine or vehicle.The weight (N) is calculated by multiplying the mass in kilograms (kg) by the acceleration due to gravity (m/s 2).

  3. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    At Mach 0.85 and 0.7 lift coefficient, a wing loading of 50 lb/sq ft (240 kg/m 2) can reach a structural limit of 7.33g up to 15,000 feet (4,600 m) and then decreases to 2.3g at 40,000 feet (12,000 m). With a wing loading of 100 lb/sq ft (490 kg/m 2) the load factor is twice smaller and barely reaches 1g at 40,000 ft (12,000 m). [15]

  4. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...

  5. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    Induced drag is related to the angle of the induced downwash in the vicinity of the wing. The grey vertical line labeled "L" is the force required to counteract the weight of the aircraft. The red vector labeled "L eff" is the actual lift on the wing; it is perpendicular to the effective relative airflow in the vicinity of the wing. The lift ...

  6. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    Given the distribution of bound vorticity and the vorticity in the wake, the Biot–Savart law (a vector-calculus relation) can be used to calculate the velocity perturbation anywhere in the field, caused by the lift on the wing. Approximate theories for the lift distribution and lift-induced drag of three-dimensional wings are based on such ...

  7. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  8. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Aircraft use the wing area (or rotor-blade area) as the reference area, which makes for an easy comparison to lift. Airships and bodies of revolution use the volumetric coefficient of drag, in which the reference area is the square of the cube root of the airship's volume. Sometimes different reference areas are given for the same object in ...

  9. Automobile drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Automobile_drag_coefficient

    Average full-size passenger cars have a drag area of roughly 8 sq ft (0.74 m 2). Reported drag areas range from the 1999 Honda Insight at 5.1 sq ft (0.47 m 2) to the 2003 Hummer H2 at 26.5 sq ft (2.46 m 2). The drag area of a bicycle (and rider) is also in the range of 6.5–7.5 sq ft (0.60–0.70 m 2). [5]