Search results
Results from the WOW.Com Content Network
In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n.
The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most n (relative to a symmetric generating set) is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial ...
The hyperbolic growth of the world population and quadratic-hyperbolic growth of the world GDP observed till the 1970s have been correlated by Andrey Korotayev and his colleagues to a non-linear second order positive feedback between the demographic growth and technological development, described by a chain of causation: technological growth ...
As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [6] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [8]
For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base.
Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.
In fact, third-quarter GDP growth was revised up to 3.1% from an earlier reading of 2.8%, due in part to more consumer spending. "But every hero has a fatal flaw," Sharma wrote.
r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =