Search results
Results from the WOW.Com Content Network
Let R be the radius of the arc which forms part of the perimeter of the segment, θ the central angle subtending the arc in radians, c the chord length, s the arc length, h the sagitta of the segment, d the apothem of the segment, and a the area of the segment. Usually, chord length and height are given or measured, and sometimes the arc length ...
Circular segment - the part of the sector that remains after removing the triangle formed by the center of the circle and the two endpoints of the circular arc on the boundary. Scale of chords; Ptolemy's table of chords; Holditch's theorem, for a chord rotating in a convex closed curve; Circle graph; Exsecant and excosecant
The minor sector is shaded in green while the major sector is shaded white. A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. [1]
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
Arc length s of a logarithmic spiral as a function of its parameter θ. Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification.
Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments. Circumference: the length of one circuit along the circle, or the distance around the circle. Diameter: a line segment whose endpoints lie on the circle and that passes through the centre; or the length of such a line segment. This is the largest ...
Let p be an interior point of the disk, and let n be a multiple of 4 that is greater than or equal to 8. Form n sectors of the disk with equal angles by choosing an arbitrary line through p, rotating the line n / 2 − 1 times by an angle of 2 π / n radians, and slicing the disk on each of the resulting n / 2 lines.
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...