enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    This sphere was a fused quartz gyroscope for the Gravity Probe B experiment, and differs in shape from a perfect sphere by no more than 40 atoms (less than 10 nm) of thickness. It was announced on 1 July 2008 that Australian scientists had created even more nearly perfect spheres, accurate to 0.3 nm, as part of an international hunt to find a ...

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  4. Finite sphere packing - Wikipedia

    en.wikipedia.org/wiki/Finite_sphere_packing

    An arrangement in which the midpoint of all the spheres lie on a single straight line is called a sausage packing, as the convex hull has a sausage-like shape.An approximate example in real life is the packing of tennis balls in a tube, though the ends must be rounded for the tube to coincide with the actual convex hull.

  5. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  6. Equivalent spherical diameter - Wikipedia

    en.wikipedia.org/wiki/Equivalent_spherical_diameter

    However, real-life particles are likely to have irregular shapes and surface irregularities, and their size cannot be fully characterized by a single parameter. The concept of equivalent spherical diameter has been introduced in the field of particle size analysis to enable the representation of the particle size distribution in a simplified ...

  7. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.

  8. Spherical polyhedron - Wikipedia

    en.wikipedia.org/wiki/Spherical_polyhedron

    In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. A polyhedron whose vertices are equidistant from its center can be conveniently studied by projecting its edges onto the sphere to obtain a corresponding ...

  9. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...