Search results
Results from the WOW.Com Content Network
The picture to the right illustrates 3 / 4 of a cake. Fractions can be used to represent ratios and division. [1] Thus the fraction 3 / 4 can be used to represent the ratio 3:4 (the ratio of the part to the whole), and the division 3 ÷ 4 (three divided by four).
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ).
Integers: 3; Fractions: ... In Babylon, a clay tablet dated 1900–1600 BC has a geometrical statement that, by implication, treats π as 25 / 8 = 3.125. [45]
For example, the numerators of fractions with common denominators can simply be added, such that + = and that <, since each fraction has the common denominator 12. Without computing a common denominator, it is not obvious as to what 5 12 + 11 18 {\displaystyle {\frac {5}{12}}+{\frac {11}{18}}} equals, or whether 5 12 {\displaystyle {\frac {5 ...
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. [1] For example, 3 7 {\displaystyle {\tfrac {3}{7}}} is a rational number, as is every integer (for example, − 5 = − 5 1 {\displaystyle -5={\tfrac {-5}{1}}} ).
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
It is not correct to divide by 100 and use the percent sign at the same time; it would literally imply division by 10,000. For example, 25% = 25 / 100 = 0.25, not 25% / 100 , which actually is 25 ⁄ 100 / 100 = 0.0025.
The Babylonians were aware that this was an approximation, and one Old Babylonian mathematical tablet excavated near Susa in 1936 (dated to between the 19th and 17th centuries BCE) gives a better approximation of π as 25 ⁄ 8 = 3.125, about 0.528% below the exact value.