enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.

  3. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    In several high school treatments of geometry, the term "exterior angle theorem" has been applied to a different result, [1] namely the portion of Proposition 1.32 which states that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles. This result, which depends upon Euclid's parallel ...

  4. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n-gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn, so the sum of the exterior angles must be 360°. This argument can be generalized to concave simple ...

  5. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  6. Triacontagon - Wikipedia

    en.wikipedia.org/wiki/Triacontagon

    One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°).

  7. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    Exterior angles can be also defined, and the Euclidean triangle postulate can be formulated as the exterior angle theorem. One can also consider the sum of all three exterior angles, that equals to 360° [9] in the Euclidean case (as for any convex polygon), is less than 360° in the spherical case, and is greater than 360° in the hyperbolic case.

  8. Pentagon - Wikipedia

    en.wikipedia.org/wiki/Pentagon

    In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.

  9. Icosagon - Wikipedia

    en.wikipedia.org/wiki/Icosagon

    The regular icosagon has Schläfli symbol {20}, and can also be constructed as a truncated decagon, t{10}, or a twice-truncated pentagon, tt{5}. One interior angle in a regular icosagon is 162°, meaning that one exterior angle would be 18°. The area of a regular icosagon with edge length t is