enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  3. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and m s is described as the spin magnetic quantum number [3] or as the z-component of spin s z. [4] Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum ...

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    However, in quantum physics, there is another type of angular momentum, called spin angular momentum, represented by the spin operator S. Spin is often depicted as a particle literally spinning around an axis, but this is a misleading and inaccurate picture: spin is an intrinsic property of a particle, unrelated to any sort of motion in space ...

  6. Larmor precession - Wikipedia

    en.wikipedia.org/wiki/Larmor_precession

    Larmor precession is important in nuclear magnetic resonance, magnetic resonance imaging, electron paramagnetic resonance, muon spin resonance, and neutron spin echo. It is also important for the alignment of cosmic dust grains, which is a cause of the polarization of starlight .

  7. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    Higher spin analogues include the Proca equation (spin 1), Rarita–Schwinger equation (spin 3 ⁄ 2), and, more generally, the Bargmann–Wigner equations. For massless free fields two examples are the free field Maxwell equation (spin 1 ) and the free field Einstein equation (spin 2 ) for the field operators. [ 24 ]

  8. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  9. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    In his PhD thesis project, Paul Dirac [2] discovered that the equation for the operators in the Heisenberg representation, as it is now called, closely translates to classical equations for the dynamics of certain quantities in the Hamiltonian formalism of classical mechanics, when one expresses them through Poisson brackets, a procedure now ...