Search results
Results from the WOW.Com Content Network
Two current-carrying wires attract each other magnetically: The bottom wire has current I 1, which creates magnetic field B 1. The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which ...
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [2]
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.
The greater the current I, the greater the energy stored in the magnetic field and the lower the inductance which is defined = / where is the magnetic flux produced by the coil of wire. The inductance is a measure of the circuit's resistance to a change in current and so inductors with high inductances can also be used to oppose alternating ...
The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2] The direction of the magnetic field through a coil of wire can be determined by the right-hand rule.
This is similar to the magnetic field produced on a plane by an infinitely long straight thin wire normal to the plane. This is a limiting case of the formula for vortex segments of finite length (similar to a finite wire): v = Γ 4 π r [ cos A − cos B ] {\displaystyle v={\frac {\Gamma }{4\pi r}}\left[\cos A-\cos B\right]} where A ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
[6] [7] He investigated and discovered the rules which govern the field around a straight current-carrying wire: [8] The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses.