Search results
Results from the WOW.Com Content Network
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm.
There is an obvious algebraic duality between the vector space of all finitely additive measures σ on Σ and the vector space of simple functions (() = ()). It is easy to check that the linear form induced by σ is continuous in the sup-norm if σ is bounded, and the result follows since a linear form on the dense subspace of simple functions ...
In mathematics, Maharam's theorem is a deep result about the decomposability of measure spaces, which plays an important role in the theory of Banach spaces.In brief, it states that every complete measure space is decomposable into "non-atomic parts" (copies of products of the unit interval [0,1] on the reals), and "purely atomic parts," using the counting measure on some discrete space. [1]
Let and be Banach spaces, : a closed linear operator whose domain () is dense in , and ′ the transpose of . The theorem asserts that the following conditions are equivalent: The theorem asserts that the following conditions are equivalent: