enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...

  3. Momentum diffusion - Wikipedia

    en.wikipedia.org/wiki/Momentum_diffusion

    A fluid flowing along a flat plate will stick to it at the point of contact and this is known as the no-slip condition. This is an outcome of the adhesive forces between the flat plate and the fluid. This is an outcome of the adhesive forces between the flat plate and the fluid.

  4. Knudsen number - Wikipedia

    en.wikipedia.org/wiki/Knudsen_number

    The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.

  5. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations are strictly a statement of the balance of momentum. To fully describe fluid flow, more information is needed, how much depending on the assumptions made. This additional information may include boundary data (no-slip, capillary surface, etc.), conservation of mass, balance of energy, and/or an equation of state.

  6. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    The initial and the no-slip condition on the wall are (,) =, (, >) =, (, >) =, the last condition is due to the fact that the motion at = is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.

  7. Von Kármán constant - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_constant

    In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.

  8. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    In fluid dynamics, the Cunningham correction factor, or Cunningham slip correction factor (denoted C), is used to account for non-continuum effects when calculating the drag on small particles. The derivation of Stokes' law , which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at ...

  9. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    Velocity Boundary Layer (Top, orange) and Temperature Boundary Layer (Bottom, green) share a functional form due to similarity in the Momentum/Energy Balances and boundary conditions. Note that in many cases, the no-slip boundary condition holds that , the fluid velocity at the surface of the plate equals the velocity of the plate at all locations.