Search results
Results from the WOW.Com Content Network
Feedback-loops are important models in the engineering of adaptive software, as they define the behaviour of the interactions among the control elements over the adaptation process, to guarantee system properties at run-time. Feedback loops and foundations of control theory have been successfully applied to computing systems. [54]
The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference.
Living control systems differ from those specified by Engineering control theory (a thermostat is a simple example), for which the reference value (setpoint) for control is specified outside the system by what is called the controller, [6] whereas in living systems the reference variable for each feedback control loop in a control hierarchy [7 ...
The definition of a closed loop control system according to the British Standards Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero."
In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]
Full state feedback (FSF), or pole placement, is a method employed in feedback control system theory to place the closed-loop poles of a plant in predetermined locations in the s-plane. [1] Placing poles is desirable because the location of the poles corresponds directly to the eigenvalues of the system, which control the characteristics of the ...
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams.
In control theory, quantitative feedback theory (QFT), developed by Isaac Horowitz (Horowitz, 1963; Horowitz and Sidi, 1972), is a frequency domain technique utilising the Nichols chart (NC) in order to achieve a desired robust design over a specified region of plant uncertainty.