Search results
Results from the WOW.Com Content Network
For example, for differential geometry, the top-level code is 53, and the second-level codes are: A for classical differential geometry; B for local differential geometry; C for global differential geometry; D for symplectic geometry and contact geometry; In addition, the special second-level code "-" is used for specific kinds of materials.
Frank Wilson Warner III (born March 2 1938 in Pittsfield, Massachusetts) [1] is an American mathematician, specializing in differential geometry. Education and career [ edit ]
Differential geometry is also indispensable in the study of gravitational lensing and black holes. Differential forms are used in the study of electromagnetism. Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems.
Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach .
In the classical theory of differential geometry, surfaces are usually studied only in the regular case. [7] [18] It is, however, also common to study non-regular surfaces, in which the two partial derivatives ∂ u f and ∂ v f of a local parametrization may fail to be linearly independent. In this case, S may have singularities such as ...
In the language of differential geometry, this derivative is a one-form on the punctured plane. It is closed (its exterior derivative is zero) but not exact , meaning that it is not the derivative of a 0-form (that is, a function): the angle θ {\\displaystyle \\theta } is not a globally defined smooth function on the entire punctured plane.
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
where is the Gauss map, and the differential of regarded as a vector-valued differential form, and the brackets denote the metric tensor of Euclidean space. More generally, on a Riemannian manifold, the second fundamental form is an equivalent way to describe the shape operator (denoted by S ) of a hypersurface,