Search results
Results from the WOW.Com Content Network
In continuum mechanics, viscous damping is a formulation of the damping phenomena, in which the source of damping force is modeled as a function of the volume, shape, and velocity of an object traversing through a real fluid with viscosity. [1] Typical examples of viscous damping in mechanical systems include: Fluid films between surfaces
A less common type of dashpot is an eddy current damper, which uses a large magnet inside a tube constructed of a non-magnetic but conducting material (such as aluminium or copper). Like a common viscous damper, the eddy current damper produces a resistive force proportional to velocity. A common use of the eddy current damper is in balance scales.
The Kelvin–Voigt model, also called the Voigt model, is represented by a purely viscous damper and purely elastic spring connected in parallel as shown in the picture. If, instead, we connect these two elements in series we get a model of a Maxwell material.
[1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3] Examples of damping include viscous damping in a fluid (see viscous drag), surface friction, radiation, [1] resistance in electronic oscillators, and absorption and scattering of light in optical oscillators.
A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy (typically heat) which is then dissipated. Most shock absorbers are a form of dashpot (a damper which resists motion via viscous friction).
Diagram of a Maxwell material. The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, [4] as shown in the diagram. If, instead, we connect these two elements in parallel, [4] we get the generalized model of a solid Kelvin–Voigt material.
Materials undergoing strain are often modeled with mechanical components, such as springs (restorative force component) and dashpots (damping component).. Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2]
Lanchester had developed a theoretical multi-plate viscous design in 1910 (patent 21,139, 12 September 1910). This design was adopted by the Daimler Company and employed on their six-cylinder engines for a number of years. Royce developed a viscous damper in 1912 that was then further developed and carried through to the B60 engine of the 1950s ...