enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bodenstein number - Wikipedia

    en.wikipedia.org/wiki/Bodenstein_number

    It is defined as the ratio of the convection current to the dispersion current. The Bodenstein number is an element of the dispersion model of residence times and is therefore also called the dimensionless dispersion coefficient. [1] Mathematically, two idealized extreme cases exist for the Bodenstein number.

  3. Taylor dispersion - Wikipedia

    en.wikipedia.org/wiki/Taylor_dispersion

    Taylor dispersion or Taylor diffusion is an apparent or effective diffusion of some scalar field arising on the large scale due to the presence of a strong, confined, zero-mean shear flow on the small scale. Essentially, the shear acts to smear out the concentration distribution in the direction of the flow, enhancing the rate at which it ...

  4. Groundwater contamination by pharmaceuticals - Wikipedia

    en.wikipedia.org/wiki/Groundwater_contamination...

    Hydrodynamic dispersion is then embedded in the advective-dispersive-reactive equation (ADRE) assuming a Fickian closure model. Dispersion is felt at the macroscale as responsible of a spread effect of the contaminant plume around its center of mass.

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation contains two empirical hydrodynamic coefficients—an inertia coefficient and a drag coefficient—which are determined from experimental data. As shown by dimensional analysis and in experiments by Sarpkaya, these coefficients depend in general on the Keulegan–Carpenter number, Reynolds number and surface roughness. [4] [5]

  7. Dispersive mass transfer - Wikipedia

    en.wikipedia.org/wiki/Dispersive_mass_transfer

    Dispersion can be differentiated from diffusion in that it is caused by non-ideal flow patterns [1] (i.e. deviations from plug flow) and is a macroscopic phenomenon, whereas diffusion is caused by random molecular motions (i.e. Brownian motion) and is a microscopic phenomenon.

  8. Van der Waals constants (data page) - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_constants...

    The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.

  9. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.