Search results
Results from the WOW.Com Content Network
These types of inferences are also referred to as "bridging inferences." For example, if a reader came across the following sentences together, they would need to have inferred that the sentences are related to one-another if they are to make any sense of the text as a whole: "Mary poured the water on the bonfire. The fire went out."
A variety of basic concepts is used in the study and analysis of logical reasoning. Logical reasoning happens by inferring a conclusion from a set of premises. [3] Premises and conclusions are normally seen as propositions. A proposition is a statement that makes a claim about what is the case.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics ), in the sense that if the premises are true (under ...
A paradox in deontic logic arising from imperatives that imply counterintuitive obligations, demonstrating challenges in formalizing moral and ethical reasoning. rule of inference A logical rule that justifies the transition from a set of premises to a conclusion, forming the basis of deductive reasoning. rule of replacement
Each one has a name (for example, argument from effect to cause) and presents a type of connection between premises and a conclusion in an argument, and this connection is expressed as a rule of inference. Argumentation schemes can include inferences based on different types of reasoning—deductive, inductive, abductive, probabilistic, etc.
The valid and invalid inferences can be compared when looking at the invalid formal inference: X is Z; Y is Z, or Y is not Z. Therefore, X is not Y. Intension (with an 's') is the connotation of a word or phrase—in contrast with its extension, the things to which it applies. Intensional sentences are often intentional (with a 't'), that is ...
The semantics of logic refers to the approaches that logicians have introduced to understand and determine that part of meaning in which they are interested; the logician traditionally is not interested in the sentence as uttered but in the proposition, an idealised sentence suitable for logical manipulation. [citation needed]